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Abstract. The existence of ‘flat’ resonances in one-dimensional quantum scattering is
established. A ‘flat’ resonance is the vanishing of a particle’s reflection coefficientR(k), for some
specific valuek = kn of its wavenumberk, as the fourth power of the difference1k = k − kn,
i.e. R(k) ∼ (1k)4. Stokes’ phenomenon in quantum scattering is found. It manifests itself as
a drastic change in the reflection coefficientR(k) as k passes through a certain critical value
k = kc associated with the scattering potentialU(x). The first numerical verification of the
semiclassical theory of resonances in one-dimensional scattering is obtained for very non-trivial
potentials.

1. Introduction

Resonances in one-dimensional quantum scattering represent one of the most interesting,
most important, and, at the same time, one of the least-studied effects among the fundamental
quantum phenomena. In the physics of 1d conductors, the significance of resonances in 1d
elastic scattering is evident in view of their impact on the mean free-flight time of electrons.
Indeed, considerNimp identical single impurities which are randomly positioned along a
linear chain of lengthL on thex-axis. If the distribution of impurities is uniform, then
the probability (referred to unit length) to find an impurity isnimp = Nimp/L. Suppose that
each impurity is described by a short-range potentialU(x) with a radiusa of atomic scale.
The distribution of impurities is supposed to be sparse, i.e.nimpa � 1. The exact reflection
amplituderk, relative to the scattering of an electron with the wavenumberk by an isolated
impurity, is then obtained by solving the Schrödinger equation

− h̄2

2m

d2ψ

dx2
+ U(x)ψ(x) = Eψ(x) (E > 0; E > U(x), −∞ < x < +∞) (1.1)

with standard boundary conditions

ψ(x) ∼ tke
ikx (x → +∞)

ψ(x) ∼ eikx + rke
−ikx (x → −∞)

(1.2)

where tk is the transmission amplitude for the wavenumberk = √
2mE/h̄. We designate

the reflection coefficient byR(k) = |rk|2.
Once the reflection amplituderk has been obtained, the mean free-flight timeτk of an

electron may easily be found. If an electron moves with a velocityv, then per unit time it
covers the distancev and may encounter an impurity with the probabilitynimpv. Multiplying
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the latter with the probability|rk|2 for the electron to be scattered backwards provided an
impurity has been encountered, we get the probability 1/τk for backward scattering per unit
time, and the mean free pathlk = vτk of an electron,

1

τk
= nimpv|rk|2 lk = 1

nimp|rk|2 . (1.3)

For weak potentialsU(x), the formula (1.3) reduces to the corresponding Born expression
[1, equation (3.1.40)].

The fact that in 1d conductors the mean free pathlk of an electron should be inversely
proportional to theexactreflection coefficientR(k), relative to the scattering of the electron
at asingle scatterer, was first pointed out by Dunlapet al [2] and Wu and Phillips [3]. The
principal importance of this statement lies in the fact that, due to possible resonances in the
scattering, the reflection coefficientR(k) may vanish for some valuek = kn. As is known,
due to elastic scattering, electron states in 1d conductors become localized with a spatial
extent of the order oflk [4, 5]. Near the resonance, the mean free pathlk may be very
large, which amounts to the appearance of extended electron states in the vicinity of the
point k = kn. As a result, the conductivity of a 1d conductor should significantly increase
when the Fermi level coincides with the position of the resonant state on the energy axis
[2, 3].

This general physical idea found its first realization in the tight-binding approximation.
Introducing the random dimer model, Dunlapet al [2] and Wu and Phillips [3] explained
the absence of localization in disordered polymers. Since then, the random dimer model
and its modifications have been extensively studied [6–16]. The extended states and the
suppression of localization were also found in the vicinity of resonances in the continuous
Kronig–Penney model with random, short-range correlated impurities [17].

Recently, there has been a growing evidence that the extended states arising in the
vicinity of resonances in the random dimer model, are rather fragile. It was shown that
the on-site electron–electron interaction, or randomness in the dimer structure, as well as
an external electric field destroy the extended states, the latter becoming localized [18–20].
Hence the search for physical mechanisms that could account for the observed stability of
extended resonant states, has become important.

The distinguishing feature of the models investigated so far is that in all of those
models the defects possessed an internal structure. It was just the internal structure of a
single scatterer that led to the resonance effect and the narrow band of conducting states
when the scatterers were randomly placed along a linear chain in a 1d conductor [3, 17].
As long as the internal structure of a defect is due to some kind of short-range correlations,
small violations in the correlation condition may destroy the phase coherence needed for
resonant states to appear [18].

It is known, however, that the internal structure of a scatterer is not necessarily needed
for resonances to arise. The appearance of resonances is a quite typical phenomenon in the
one-dimensional quantum scattering [21]. The resonances may well occur even if a scatterer
has no visible structure. Moreover, in the present paper it is shown that, in addition to simple
resonances studied previously, also much stronger ‘flat’ resonances are possible in the one-
dimensional scattering, and this even for monomer (single) impurities. A ‘flat’ resonance is
the vanishing of an electron’s reflection coefficientR(k), for some valuek = kn of electron
wavenumberk, as the fourth power of the difference1k = k − kn, i.e. R(k) ∼ (1k)4.
(We refer to a conventional resonance, withR(k) vanishing as the square of the difference
R(k) ∼ (1k)2, as a ‘simple’ resonance).
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In section 2, the existence of flat resonances in 1d scattering is demonstrated by means
of a high-precision numerical solution of the Schrödinger equation for a specific, short-
range impurity potential. However, rather than being an exclusive feature of the latter,
this property is shared by many one-dimensional potentials (see discussion in section 4).
Theoretical analysis of numerical data and the explanation of flat resonances are given in
section 3. The results are discussed in section 4.

2. Flat resonances in one-dimensional scattering

For further investigation, let us specify the impurity potentialU(x). As a representative
example, we takeU(x) to be

U(x) = − |U0|
cosh(x/a)

. (2.4)

The potential (2.4) is clearly short range so it is well suited for numerical analysis. On
the other hand, the potential (2.4) belongs to a wide class of potentials whose analytic
structure contains an essential element which is responsible for flat resonances. Moreover,
the potential (2.4) exhibits still another interesting feature, namely, the Stokes’ phenomenon
in the reflection. It is discussed below in section 3.

On measuring the electron’s coordinatex in units of a, we rewrite equation (1.1) in an
equivalent form

d2ψ

dx2
+ (k0a)

2

[(
k

k0

)2

+ 1

coshx

]
ψ(x) = 0 (2.5)

where k0 = √
2m|U0|/h̄ is the characteristic wavenumber associated with the potential

U(x) (2.4). The solutions of (2.5) are not known. The only information on the reflection
in the potential (2.4) is the one available in the Born approximation, which yields

r
(B)
k = π(k0a)

2

2ka

1

cosh(πka)
e−iπ/2 ((k0a)

2 � min(ka, 1)). (2.6)

The behaviour of the reflection coefficientR(B)(k) = |r(B)k |2, as given by (2.6), is rather
plain: for weak potentials (2.4),R(B)(k) monotonically decreases with increasingk > 0. To
see what may happen for stronger scattering potentials, let us first investigate equation (2.5)
numerically.

As is known, the functionrk decreases exponentially with increasingk [22]. Let us
introduce a convenient generic form for theexact reflection amplituderk by writing both
its exponential factor and its phase factor explicitly, that is,

rk = r0(k)e
−πβ+iφ (k > 0) (2.7)

the corresponding form for the exact reflection coefficientR(k) being

R(k) = R0(k) e−2πβ R0(k) = r2
0(k). (2.8)

The branchφ = φ(k) of the phase of the reflection amplituderk is taken to be a continuous
function of the wavenumberk. To be consistent with this choice, we have to allow the real-
valued pre-exponential factorr0(k) in (2.7) to assume negative values as well as positive
ones. The functionβ = β(k), which appears in the exponent on the right-hand side of (2.7),
will be chosenfor all k > 0 in accordance with the semiclassical theory of one-dimensional
scattering [21], i.e. for the potential (2.4) (cf section 3)

β(k) = 2ka (k 6 k0)

β(k) = 2ka g(η) (k > k0)
(2.9)
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where η = k0/k. The functiong(η) is defined below in section 3 by (3.25a); it is a
continuous function ofk for all k > 0. The functionβ(k) (2.9) is thus continuous but not
smooth atk = k0. The jump discontinuity the first derivative dβ(k)/dk has atk = k0, is
due to the semiclassical nature of expressions (2.9) (as discussed below in section 3.1). The
exact reflection amplituderk is expected to be continuous along with its first derivative for
all k > 0.

For the potential (2.4), we have determined the exact pre-exponential factorr0(k) in the
relation (2.7), as a function ofk, by means of a high-precision numerical solution of the
Schr̈odinger equation (2.5). Namely, for each value ofk given in sequence (withk0 being
fixed), equation (2.5) was solved for the wavefunctionψ(x) with the boundary conditions
(1.2). Then, from this numerical solution, the complex value of reflection amplituderk
was determined. Finally, on multiplying the obtained numerical value ofrk with the factor
exp(+πβ) calculated for the samek according to equations (2.9) and (3.25a), we found the
corresponding value of the factorr0(k).

In order to bring our numerical analysis closer to the region covered by the existing
theory [21], and thus to verify a quantitative agreement with the latter, we have taken
k0a = 5. The quality of the algorithm, and the precision of calculations, were chosen to be
high enough to ensure the evaluation of the factorr0(k) in (2.7) with at least five reliable
digits even at the far edge of the investigated range, i.e. atka = 10, where the exponential
factor exp(−πβ) in (2.7) is of the order of 10−19.

The graph of the functionR0(k) = r2
0(k) so obtained is plotted in figure 1. Fork0a = 5,

there are three simple resonances positioned atka = 3.190 (SR1),ka = 4.434 (SR2), and
ka = 4.935 (SR3), respectively, correct to three decimal places. Each simple resonance is
related to a simple zero of the reflection amplituderk. In addition to simple resonances, the
graph shows the existence of a flat resonance (FR) atka = 6.417 which corresponds to a
double zero of the reflection amplituderk.

The graph in figure 1 also reveals a drastic change in the behaviour of the reflection
coefficientR(k) as the wavenumberk passes through the critical valuek = k0 which is
marked in figure 1 by the vertical broken line. Theoretical analysis of these features of the
reflection is given in the next section.

3. Theory

3.1. The Stokes’ phenomenon in the reflection

In the semiclassical approximation, the main features of the reflection are determined by
the analytic structure of the particle’s classical momentum [21] (measured in units of ¯h/a)

p(z) = (k0a)

[
1

η2
+ 1

coshz

]1/2

(η = k0/k) (3.10)

regarded as a function ofcomplexcoordinatez. The branch of the functionp(z) is taken
to be positive forz lying on the real axis, and determined by continuity elsewhere. The
semiclassical approximation is valid if, first, the parameterk0a is large

k0a � 1 (3.11)

and, secondly, if the classical momentump(x) of a particle is a large and slowly varying
function of the particle’s real coordinatex. The exact mathematical expression for the latter
property is given by Olver’s condition [23, 21]∫ +∞

−∞

∣∣∣∣p−1/2(x)
d2

dx2
p−1/2(x)

∣∣∣∣ dx � 1. (3.12)
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Figure 1. Pre-exponential factorR0(k) in the reflection coefficientR(k) (2.8) as obtained by
numerical solution of the Schrödinger equation (2.5) for the potentialU(x) = −|U0|/ cosh(x/a)
(k0a = 5). SR1–SR3, simple resonances; FR, a ‘flat’ resonance; P1–P5, local maxima in the
reflection. The vertical broken line marks the critical valueka = k0a.

Let us investigate the analytic structure of the functionp(z) (3.10) relative to the
potential (2.4). If the two conditions (3.11) and (3.12) are fulfilled, then only those of
the singularities ofp(z) should be taken into account that are nearest the real axis. For all
k > 0, there is a simple poles0 = iπ/2 of the functionU(z) (2.4); its position does not
depend onk. As to the complex turning points (i.e. simple complex zeros ofp(z)), their
positions change with increasingk in such a way that the points move in the complex plane
while tracing certain trajectories as functions ofη. For the potential (2.4), two cases are to
be considered. Ifk > k0 (i.e. η 6 1), then there is just one turning pointz0,

z0 = i
[π

2
+ arcsin(η2)

]
(3.13)

which lies in the upper half of the complex plane at a minimal distance from the real axis.
As k decreases,η tends to unity from below, whereas the turning pointz0 moves along the
imaginary axis towards the pointz = iπ . The latter is attained atk = k0 (i.e. η = 1).

Just at the moment, however, ask becomes smaller thank0 (k < k0, andη > 1), in
place of the single turning pointz0 there appeartwo distinct turning pointsz1 andz2

z1 = − ln
(
η2 +

√
η4 − 1

)
+ iπ z2 = ln

(
η2 +

√
η4 − 1

)
+ iπ. (3.14)

It is just the turning point’s bifurcation that is responsible for the drastic change in the
behaviour of the reflection coefficientR(k), at k = k0, which is displayed in figure 1. With
a still further decrease ink, the two turning pointsz1 andz2 move away from the imaginary
axis in opposite directions along the line Imz = π parallel to the real axis.
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The reflection at a pair of complex-conjugate turning points(zj , z
∗
j ) is described by an

amplitude [21]

rk(zj ) = exp(−πβz + iϕz − iπ/2) (j = 0, 1, 2) (3.15)

where

βz = 1

iπ

∫ zj

z∗
j

p(z) dz ϕz = 2 Re lim
x0→−∞

[ ∫ zj

x0

p(z) dz + kx0

]
(Im zj > 0). (3.16)

The reflection amplitude relative to a pair of complex-conjugate simple poles(s0, s
∗
0) is

given by

rk(s0) = exp(−πβs + iϕs + iπ/2) (3.17)

where

βs = 1

iπ

∫ s0

s∗0

p(z) dz ϕs = 2 Re lim
x0→−∞

[ ∫ s0

x0

p(z) dz + kx0

]
(Im s0 > 0). (3.18)

The total reflection amplituderk is obtained as the sum of partial reflection amplitudesrk(zj )

(3.15) andrk(s0) (3.17), the sum extended to all reflecting points that must be taken into
account.

Assuming the reflection in the potential (2.4) to be due to isolated singularities of the
function p(z) (3.10), we should write the total reflection amplituderk, for k > k0, as the
sum of two terms

rk = rk(z0)+ rk(s0) (3.19a)

whereas fork < k0 there would be the sum of three terms

rk = rk(z1)+ rk(z2)+ rk(s0). (3.19b)

Each one of the terms on the right-hand sides of equations (3.19a) and (3.19b) is an
exponential of the respective type (3.15) or (3.17), with a constant coefficient that is equal
to unity. The comparison of the formula (3.19a) with (3.19b) shows that, due to the
turning point’s bifurcation effect, there is an abrupt (dis)appearance, atk = k0, of just one
exponential term related to the extra turning point. Since an exponential never vanishes in
the open complex plane, the total reflection amplituderk, as determined by the semiclassical
formulae (3.19a) and (3.19b), has a jump discontinuity atk = k0.

In reality, the numerical analysis shows the exact reflection coefficientR(k) to be a
continuous function ofk (cf figure 1), as it should be [24]. The fact is that the formulae
(3.19a) and (3.19b) areasymptoticrepresentations of the reflection amplituderk under the
conditions (3.11) and (3.12). For this reason, the discontinuity of the functionrk given by
equations (3.19) means only that some coefficients in theasymptotic formsof the function
rk change abruptly as the argumentk of the function passes through the critical value
k = k0. This event is of the same nature as the Stokes’ phenomenon known in the theory
of asymptotic expansions [23]. We see that the Stokes’ phenomenon in one-dimensional
quantum scattering appears at a critical valuek = kc of the particle’s wavenumberk at
which the bifurcation of turning points occurs (for the specific potential (2.4),kc = k0).
It manifests itself in a singular behaviour of semiclassical quantities as functions ofk, at
k = kc. Thus, in addition to the jump discontinuities of the semiclassical expressions for
rk and dβ(k)/dk mentioned above, there is also a logarithmic singularity of the derivative
df (η)/dη at η = 1, the functionf (η) being defined below by equations (3.23) and (3.42).

A more detailed investigation of coefficients in the asymptotic forms forrk is beyond
the reach of the semiclassical theory, which is asymptotic in nature. Such an investigation
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Figure 2. Typical positions of reflecting points in the upper half of the complexz-plane for
the potentialU(z) = −|U0|/ coshz (a = 1). The positions are shown for different values of a
particle’s wavenumberk: (a) k lies to the left of the second simple resonance SR2, i.e. within
the range 0–SR2 in figure 1; (b) the simple poles0 is engaged in ‘doubling’ when the value of
k corresponds to the third local maximum P3; (c) k = k0, the doubling of the simple poles0 is
complete; (d) k > k0, four coupled reflecting pointszz andss form a ‘string’.

becomes possible, however, when the semiclassical expressions forrk are considered along
with numerical data on the reflection. Let us first analyse the region of lower energies
k 6 k0.

3.2. Lower energiesk 6 k0. Doubling of simple poles

For the functionp(z) (3.10), the integral on the left-hand side of (3.12) has the assessment∫ +∞

−∞

∣∣∣∣p−1/2(x)
d2

dx2
p−1/2(x)

∣∣∣∣ dx 6 1

2k0a

( |U0|
E

)1/2 |U0|
E + |U0| (3.20)

for all E ∈ (0,+∞). Hence Olver’s condition (3.12) yields simplyka � 1.
If k is less thank0 but not too close tok0, then the typical configuration of reflecting

points in the upper half of the complexz-plane is shown in figure 2(a). The total reflection
amplitude is given by the formula (3.19b). On substituting the expressions (3.15) and (3.17)
in (3.19b) and then evaluating the corresponding integrals given by (3.16) and (3.18), we
obtain

rk = [2 cos(πα)− e−2πkah(η)]e−πβ+iϕz1 (k < k0, η = k0/k). (3.21)

In (3.21), the parameterα = α(k) is given by

α = 1

π

∫ z2

z1

p(z) dz = 2kaf (η) (η = k0/k) (3.22)
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where the functionf (η) is

f (η) = 1

π

∫ 1

0

dx√
x(1 − x2)

√
η2 − x (η > 1). (3.23)

The path of integration in (3.22) runs in the complex plane from the turning pointz1 to the
turning pointz2 as shown in figure 2(a). For the parameterβ = β(k) in the exponent of
(3.21) we obtain the expression (cf (2.9))

β = 1

π

∫ z2

z∗
2

p(z) dz = 2ka[g(η)− h(η)] (η = k0/k). (3.24)

The functionsg(η) andh(η) are found to be

g(η) = 1

π

∫ 1

0

dx√
x(1 − x2)

√
x + η2 (η > 0) (3.25a)

h(η) = 1

π

∫ η2

1

dx√
x(x2 − 1)

√
η2 − x (η > 1). (3.25b)

It may be shown that, forη > 1, there is an identity

g(η)− h(η) = 1 (1 6 η < ∞). (3.26)

Substituting (3.26) in (3.24) yieldsβ = 2ka, (0 6 k 6 k0). The phaseϕz1 in (3.21) is given
by

ϕz1 = −π
2

+ πα + 2 Re lim
x0→−∞

[ ∫ z1

x0

p(z) dz + kx0

]
. (3.27)

The three functionsf (η), g(η), andh(η) may be expressed in terms of the hypergeometric
functions oftwo variables (Appell’s seriesF1(α, β, β

′, γ ; x, y) [25, vol 1, chapter 5). The
graphs of the functionsf (η), g(η), andh(η) are plotted in figure 3. The straight chain
line in figure 3 represents the common asymptote for the graphs off (η) andg(η) which
is described by the first term on the right-hand side of (3.29). All the three functions are
seen to be continuous at the critical pointk = k0 (i.e. η = 1). However, the first derivatives
f ′(η) andh′(η) (with respect toη, or k) become singular atk = k0. In particular,f ′(η)
has a logarithmic singularity atk = k0 while h′(η) has a jump discontinuity at this point.

The functionh(η) (3.25b) vanishes atη = 1

h(η) ∼ 1√
2
(η − 1) (η → 1+) (3.28)

and it monotonically increases with increasingη > 1. As η → +∞ (i.e. k → 0+), the
asymptotic form forh(η) is

h(η) = 02(1/4)

(2π)3/2
η − 1 + O

(
1

η

)
(3.29)

where0(z) is the Gamma function.
Due to those features of the functionh(η), the second (exponential) term in the

expression

r0(k) = 2 cos(πα)− e−2πkah(η) (3.30)

for the pre-exponential factorr0(k) in (3.21) is negligible for allk < k0 except in the vicinity
of the pointk = k0 defined by

k0 − k

k0
6 1

k0a
. (3.31)
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Figure 3. Graphs of the functionsf (η) (bold full curve),g(η) (broken curve), andh(η) (thin
full curve). The chain line in the figure is described by the equation(2π)−3/202(1/4)η; it is
the asymptote for the graphs off (η) andg(η).

Taking into account that the exponential on the right-hand side of (3.30) comes from the
simple poles0, we infer that, for allk < k0 outside the narrow range (3.31), the reflection
of a particle in the potential (2.4) is determined by the turning pointsz1 andz2 (as well as
their complex conjugates). For thosek, the reflection coefficientR(k) = |rk|2 is thus given
by

R(k) = 4 cos2(πα)e−4πka (ka � 1, (k0 − k)a > 1) (3.32)

with α defined by (3.22). Note that the exponent in (3.32) is twice as large as the one given
by the Born expression (2.6) forka � 1.

The semiclassical expression (3.30) forr0(k), with α = α(k) given by (3.22) and
(3.23), is plotted in figure 4 as the full curve that extends up to the originka = 0. The
diamonds in figure 4 represent the exact values for the same functionr0(k) which were
obtained from the numerical solution of the Schrödinger equation as described in section 2.
A good quantitative agreement is observed between the semiclassical theory (full curve in
figure 4) and exact data (diamonds in figure 4), except in the neighbourhood of the point
ka = k0a = 5. The agreement is nearly perfect forka > 2 (cf conditionka � 1 (3.20)
for the semiclassical theory to be valid). The equationα = n+ 1/2 (with positive integers
n) for the energies of simple resonances SR1 and SR2, which is found from the relation
(3.32), coincides with the general equation (44) derived in [21]. The lowering of the local
maximum P3 in the full curve, which is due to the exponential term in (3.30), is distinctly
seen both in figure 4 and in figure 1.
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Figure 4. Pre-exponential factorr0(k) in the exact reflection amplituderk (2.7) for the potential
U(x) = −|U0|/ cosh(x/a) (k < k0, k0a = 5). The diamonds represent the exact data obtained
by numerical solution of the Schrödinger equation (2.5) for the potential (2.4) withk0a = 5.
The full curve that extends up to the origin is described by equation (3.34) withξ = 1, whereas
the lower curve in the neighbourhood ofka = 5 is described by the same equation (3.34) with
ξ = 2.

However, ask approaches the critical valuek0, there is a growing discrepancy between
the exact data, on the one hand, and the semiclassical values forr0(k) as given by the
formula (3.30), on the other hand. To get an insight into what happens ask → k0, we have
plotted, in the same figure 4, a fragment of another curve, the lower one, in the vicinity of
the pointka = 5. The equation for this second (lower) full curve is

r0(k) = 2 cos(πα)− 2e−2πkah(η) (3.33)

it differs from (3.30) by an additional factor 2 in front of the exponential term. We see that
in a very narrow range ofk in the vicinity of the critical pointk = k0, the diamonds in
figure 4 quit the curve (3.30) and glide down to the curve (3.33). This means that, in fact,
the actual values of the pre-exponential factorr0(k) are given in this range by the formula

r0(k) = 2 cos(πα)− ξe−2πka h(η) (3.34)

where the coefficientξ = ξ(k) rapidly increases fromξ = 1 to ξ = 2 in a very narrow
range 4.6 6 ka 6 4.8 (the Stokes’ range). It is just this rapid increase in the coefficient
ξ that represents the Stokes’ phenomenon in the reflection. In view of the fact that (i) the
exponential term in equation (3.30), or in (3.33), is due to the simple poles0 of the function
U(z); and that (ii) the contribution of asingle simple pole is described by the exponential
(3.17) with number 1 as its coefficient, we see that the increase in the exponential’s ‘weight’
ξ in (3.34) from 1 to 2 may be interpreted as an effective ‘doubling’ of the simple pole
s0. More precisely, themathematicalnature of the pointz = s0 in the complex plane
remains unalterably the same, namely,s0 is a simple pole of the functionU(z) for all
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k > 0. However, in thephysicalprocess of scattering, as the reflecting points0 is gradually
coming on the scene with increasingk, it is progressively perceived by the quantum particle
asmore than just onereflecting point, as if being ‘divided’ between the two turning points
z1 and z2. The effective configuration of reflecting points that corresponds to the local
maximum P3 in figure 4, is given in figure 2(b). The thin curve in this figure, which joins
the pointsz1 andz2 together, represents the path of integration in (3.22).

Thus, ask → k0, the numerical analysis reveals the fact that, instead of the expected
disappearance of one exponential term in (3.19b) that is associated with one of the turning
points, in reality there is the doubling of the coefficient for the exponential in (3.19b) that
represents the simple pole. At the critical valuek = k0, the simple pole’s doubling is
complete (ξ = 2 in (3.34)). At the same time, the two turning pointsz1 and z2 melt into
just onegeometricalpoint in the complex plane while still being perceived by the particle
as two distinct reflecting points lying on the two sides of the cuts0–z0. In place of two
formulae (3.19a) and (3.19b), in the vicinity of the critical valuek = k0 there is, in fact, a
single relation

rk = rk(z1)+ rk(z2)+ rk(s1)+ rk(s2) (3.35)

that corresponds to the configuration shown in figure 2(c). As a result, the continuity of the
reflection coefficientR(k) at k = k0 is ensured. From (3.35) we find the pre-exponential
factor r0(k) and the reflection coefficientR(k), for k ≈ k0,

r0(k) = −4 sin2
(πα

2

)
R(k) = 16 sin4

(πα
2

)
e−4πk0a

(
0<

k0 − k

k0
� 1

k0a

)
.

(3.36)

Although the formula (3.36) is valid within a narrow range ofka in the neighbourhood of
k0a = 5, the change in the reflection coefficientR(k) in this range, as given by (3.36), is
none the less significant (cf figure 1).

3.3. Higher energiesk > k0. Formation of the ‘string’

Further evolution of the reflecting structure in the complex plane, with increasingk > k0, is
shown in figure 2(d). There are two reflecting pointszz (each one lying on the respective
side of the cuts0–z0) with one and the same geometrical position that coincides with the
position of the turning pointz0 (3.13). Also, there are two reflecting pointsss (divided by
the cut) with one and the same complex coordinatez = iπ/2, the one of the simple pole
s0. Numerical data now suggest, however, that the reflecting structure shown in figure 2(d)
cannot be considered to be made up of fourisolated reflecting points. Indeed, assuming the
four points to be quite independent, from (3.35) we would get the following semiclassical
expression for the reflection amplituderk

rk = −4 sin2(πSk)e
−πβ+iϕs . (3.37)

In (3.37), the phaseϕs is defined by

ϕs = −π
2

+ 2 Re lim
x0→−∞

[ ∫ s0

x0

p(z) dz + kx0

]
. (3.38)

For the functionβ = β(k) in the exponent of (3.37) we find

β = 1

π

∫ s0

s∗0

p(z) dz = 2ka g(η) (η = k0/k 6 1) (3.39)
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with the same expression (3.25a) for g(η). As η decreases fromη = 1 to η = 0, the
function g(η) monotonically decreases from 1 to1

2 (cf figure 3). The functionSk in (3.37)
is given by

Sk = 1

2π

∮
p(z) dz. (3.40)

The path of integration in (3.40) is shown in figure 2(d) as the closed thin curve that
encircles the ensemble of reflecting points in the positive direction. On evaluating the
integral in (3.40), withp(z) defined by (3.10), we find

Sk = kaf (η) (η = k0/k). (3.41)

The expression forf (η), with η < 1, is found to be (cf (3.23))

f (η) = 1

π

∫ η2

0

dx√
x(1 − x2)

√
η2 − x (η 6 1). (3.42)

The functionf (η) monotonically decreases with decreasingη. In particular,

f (η) ∼ 2

π
ln(1 +

√
2) (η → 1)

f (η) = 1
2η

2 + O(η4) (η → 0+).
(3.43)

The pre-exponential factorr0(k) = −4 sin2(πSk), which appears on the right-hand side of
(3.37), is plotted in figure 5 as the broken curve. The diamonds in this figure represent
exact data obtained by a high-precision numerical solution of the Schrödinger equation
(2.5). We see that theoscillations in the reflection amplituderk are in perfect agreement
with the function sin2(πSk) in the formula (3.37). There are two local minima P4 and
P5 atka = 4.736 andka = 5.350, respectively. Also, there is a ‘flat’ resonance FR at
ka = 6.417, where sin(πSk) vanishes. The existence of the flat resonance FR, which is
thus confirmed numerically, gives evidence to the fact that, fork > k0, the coefficientξ
in (3.34) is equal to 2 exactly. The general equation for the energies of flat resonances is
found to be

Sk = 1

2π

∮
p(z) dz = n (n = 1, 2, . . .) (3.44)

in agreement with the general equation (46b) [21]. At resonance valuesk = kn defined by
(3.44), the reflection amplituderk vanishes as the square(1k)2 of the difference1k = k−kn.
In addition, in the vicinity of a flat resonancerk does not change its sign, unlike the behaviour
of rk in the neighbourhoods of simple resonances.

On the other hand, theamplitudeof oscillations inrk is found to be somewhat greater
than 4, the latter being the typical value for an ensemble of fourisolated points. In other
words, the reflecting properties of the structure shown in figure 2(d) are close but not quite
identical to those of an ensemble of four isolated reflecting points. Rather, there is a slight
enhancement in the reflecting power of the four points, which may be ascribed to their
mutual influence. To take the latter into account, let us introduce an additional real factor
Cs > 1 into the formula (3.37), the latter thus becoming

r
(S)
k = −4Cs sin2(πSk)e

−πβ+iϕs . (3.45)

As is seen from figure 5,Cs is a slowly varying function of the particle’s wavenumberk,
considered on the scale associated with the period of oscillations in the reflection
amplituderk (3.45). On comparing the formula (3.45) with numerical data obtained for
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Figure 5. Pre-exponential factorr0(k) in the exact reflection amplituderk (2.7) for the potential
U(x) = −|U0|/ cosh(x/a) (k > k0, k0a = 5). The full curve is described by equation (3.45)
with Cs = 1 + k/(4πk0). The broken curve corresponds to the same equation (3.45) with
Cs = 1. The diamonds represent the exact data as obtained from numerical solution of the
Schr̈odinger equation (2.5) for the potential (2.4) withk0a = 5.

the potentials (2.4) with various values ofk0a, we have found a uniform approximation for
the correction factorCs , as a function ofk,

Cs = 1 + k

4πk0
(k > k0) (3.46)

which is valid in the investigated rangek0a 6 ka < 10. In particular,Cs = 1.086 at the
point of the first local minimum P4, is correct to three decimal places. The slow increase in
Cs is illustrated in figure 5, where the full curve represents the graph for the pre-exponential
factor r0(k) = −4Cs sin2(πSk) in (3.45) withCs given by (3.46). Recall that the broken
curve in this figure corresponds toCs = 1 in equation (3.45).

Thus, ask > k0, the numerical analysis displays the appearance of a new reflecting
element in the analytic structure of the particle’s classical momentump(z), for the
potential (2.4), the element being distinct from an ensemble of isolated reflecting points.
Geometrically, this element is represented (in the upper half of the complex plane) by a
pair of one turning pointz0 and one simple poles0, which are joined together, andsplit,
by a cut in the complex plane. The main distinguishing feature of such a pair is that the
integral

∫ s0
z0
p(z) dz, taken along the cut, turns out to bereal valued identically with respect

to the particle’s energy varying in a wide range on the energy axis. We shall refer to the
pair z0–s0 joined by a cut as the‘string’ . The physical structure of the ‘string’ is shown in
figure 2(d) as an ensemble of fourcoupled reflecting pointszz andss whereas the related
reflection amplitude is given by (3.45). The reflection coefficientRs(k) associated with the
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‘string’ is readily obtained from (3.45)

Rs(k) = |r(S)k |2 = 16C2
s sin4(πSk)e

−2πβ. (3.47)

It is just the formation of the ‘string’ in the analytic structure of the particle’s classical
momentump(z) that flat resonances are due to. For the potential (2.4), withk0a = 5, the
formula (3.47) predicts one additional flat resonance atka ≈ 12.520 as well as one new
local maximum atka ≈ 25.00. As ka > 25, the reflection coefficientR(k) monotonically
falls off with increasingk while vanishing in the limitk → +∞. For ka � (k0a)

2, the
asymptotic form forRs(k) is given by

Rs(k) ∼ C2
s

[
π(k0a)

2

ka

]4

e−2πka (ka � (k0a)
2). (3.48)

The exponential factor in (3.48) is just the same as given by the Born formula (2.6).
However, since the asymptotic form of the correction factorCs is not yet known for large
k, there is no certainty that the pre-exponential factor in (3.48) agrees completely with that
given by the Born expression (2.6). There is no general reason to believe that the latter
two factors should coincide [21] because the expressions (3.48) and (2.6) are valid under
different conditions.

3.4. Splitting of flat resonances in the Stokes’ range

It may well happen that, for certain specific values of parameters associated with the
scattering potentialU(x), the position of a flat resonance on thek-axis, as obtained from
the semiclassical theory, falls into the Stokes’ range where the coefficientξ = ξ(k) in
(3.34), while rapidly increasing withk, has not yet reached its limiting valueξ = 2. In
this narrow range, the exact reflection amplituderk will be asymptotically represented by
equation (3.34) with a rapidly increasing functionξ = ξ(k) such that 1< ξ < 2. As a
result, instead of one double zero (flat resonance), the reflection amplituderk will have two
closely spaced simple zeros (simple resonances) on thek-axis. This effect appears as the
splitting of the flat resonance in the Stokes’ range.

The effect of splitting of a flat resonance is illustrated in figure 6 for the potential (2.4),
taken withk0a = 2. For this value ofk0a, the semiclassical theory predicts only one flat
resonance that falls into a close vicinity of the critical pointk = k0. Therefore, in place of
a single flat resonance, two closely spaced simple resonances are observed in the Stokes’
range, atka = 1.985 andka = 2.229, respectively (correct to three decimal places). For
comparison, the Born approximation (2.6) for the pre-exponential factor is also represented
in figure 6 (chain curve).

4. Discussion and conclusions

In problems of one-dimensional quantum scattering, the motion of a particle is not confined
strictly to the real axis. Due to its ability to penetrate into classically forbidden regions,
in particular, into the domains of complex coordinatez and complex momentump(z), a
quantum particle moving along the realx-axis is sensitive to the singularities of the function
p(z) lying in the embedding complexz-plane. As a result, if there are no turning points on
the real axis, the main features of the quantum scattering of a particle in a one-dimensional
potentialU(x) are determined, in the semiclassical approximation, by the analytic structure
of the particle’s classical momentump(z) considered as a function of complex coordinatez.
For this reason, if one and the same essential element appears in the respective analytic
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Figure 6. Splitting of a flat resonance in the Stokes’ range for the potentialU(x) =
−|U0|/ cosh(x/a) (k0a = 2). Full curves represent the semiclassical expressions for the pre-
exponential factorr0(k) as given by equation (3.30) forka < 2, and equation (3.45) forka > 2,
respectively. The correction factorCs in equation (3.45) was chosen according to (3.46).
The diamonds represent the exact data obtained from numerical solution of the Schrödinger
equation (2.5) for the potential (2.4) withk0a = 2. The chain curve corresponds to the Born
approximation for the pre-exponential factor in (2.6).

structures associated with two different potentials, then the pictures of quantum scattering
revealed by these two potentials will have similar qualitative features due to the common
element. This is a kind ofsimilarity law in quantum scattering.

The analytic structure ofp(z) is liable to appreciable changes as a function of a particle’s
wavenumberk. In particular, the bifurcation of turning points and the formation of a special
element, called the ‘string’, in the analytic structure ofp(z), may give rise to flat resonances
in the reflection. Geometrically, this element is represented (in the upper half of the complex
plane) by a pair of one turning pointz0 and one simple poles0 (of the functionU(z)), which
are joined together, and split, by a cut in the complex plane. The main distinguishing feature
of such a pair is that the integral

∫ s0
z0
p(z) dz, taken along the cut, turns out to bereal valued

identically with respect to the particle’s energy varying in a wide range on the energy axis.
In section 3, the existence of flat resonances has been established for theattractivepotential
(2.4) (U(x) < 0). For attractive potentials, in the pairz0–s0 that forms a ‘string’, the simple
poles0 lies closer to the real axis than the associated turning pointz0, i.e. 0< Im s0 < Im z0

(cf figure 2(d)). It is the presence of anattractive ‘string’ in the analytic structure of a
potential that gives rise to flat resonances in quantum scattering for this potential.

The appearance of a pair of one turning point along with just one related simple pole
is not at all an exclusive feature of the specific potential (2.4). This pair is frequently
found with many other potentials. The simplest ones of them may be guessed while more
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complicated potentials may be constructed by the methods of the theory of functions of a
complex variable. The general way of constructing a scattering potentialU(x) with desired
analytic structure consists in placing the required number of simple poles and turning points
at prescribed positions in the complex plane, and then using Mittag–Leffler’s theorem on
meromorphic functions and Weierstrass’s theorem on entire (integral) functions. To have
examples different from the one investigated above (2.4), let us consider a set of potentials

U(x) = −|U0| e−µ2x2/a2

1 + (x/a)2
(4.49)

with real constantsµ. All of these potentials exhibit the bifurcation of turning points at
k = kc where the critical valuekc is found to be

kc = k0µe(µ
2+1)/2

(
k0 =

√
2m|U0|/h̄

)
. (4.50)

The evolution of the analytic structure associated with the potentials (4.49), as a function of
the wavenumberk, is essentially the same as the one presented in figure 2 for the potential
(2.4). Therefore the main features of quantum scattering in any one of the potentials (4.49)
are determined, fork < kc, by a pair of complex turning pointsz1 andz2 (cf figure 2(a)),
while for k > kc there appears an attractive ‘string’ in the complex plane (cf figure 2(d)) that
gives rise to flat resonances in the reflection. We have investigated the scattering problem
for the potential (4.49), withµ = 1

9 andk0a = 4, numerically, by solving the Schrödinger
equation (1.1) with boundary conditions (1.2). The exact (numerical) data so obtained have
been processed in the same way as described in section 3; the data are plotted as diamonds
in figure 7 which represents the pre-exponential factorr0(k) of the exact reflection amplitude
rk (2.7). Forµ = 1

9, equation (4.50) yields the critical valuekc = 0.184k0 andkca = 0.737,
correct to three decimal places. This value is marked in figure 7 by a vertical broken
line. The full curves in this figure have been obtained from the semiclassical theory (see
section 3). The correction factorCs in equation (3.45) was taken to be

Cs = 1 + 1

2πk0a
ln2(ka + k0a). (4.51)

Thus, figure 7 displays two flat resonances (FR1 and FR2), one split flat resonance (Split
FR) in the Stokes’ range 0.72< ka < 0.79, and one simple resonance (SR) in the range of
lower k < kc.

Figures 4–7 provide an idea on the quality of the semiclassical theory. The formal
conditions for the theory to be valid, namely, (i)k0a � 1 (3.11) and (ii) ka � 1
(3.20), confine the applicability of the semiclassical formulae (3.32) and (3.37) to the range
of k where the reflection amplituderk is exponentially small. However, the numerical
investigation has shown the semiclassical theory to be in qualitative and fair numerical
agreement with exact data even fork0a ∼ 1 andka < 1, i.e. in the ranges of parameters
where this theory is formally not applicable. The unexpected quality of the semiclassical
formulae beyond their own range of validity, is a surprising fact.

If a ‘string’ is found in the analytic structure of arepulsive potential (U(x) > 0),
then the mutual positions of the turning point and the simple pole in the pairz0–s0 are
interchanged, namely, it is now the turning pointz0 that is found to lie closer to the real
axis than the corresponding simple poles0, 0 < Im z0 < Im s0. Numerical analysis shows
that, for repulsive‘strings’, flat resonances do not appear. This problem will be the subject
of a special discussion.

As far as the relation to experimental situations is concerned, the main result of this
paper consists in establishing the fact that flat resonances in 1d quantum scatteringexist. In
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Figure 7. Pre-exponential factorr0(k) in the reflection amplituderk for the potentialU(x) =
−|U0| e−x2/(9a)2/[1 + (x/a)2] , (k0a = 4). The bifurcation of turning points occurs at the
point ka = kca = 0.737 302, which is marked by the vertical broken line. Full curves
represent the semiclassical expressions forr0(k), as given by equation (3.30) forka < 2,
or by equation (3.45) forka > 2, respectively. The correction factorCs in (3.45) was taken
according to equation (4.51). The diamonds represent the exact data obtained from numerical
solution of the Schr̈odinger equation (2.5) for the potential (4.49) withk0a = 4. SR, simple
resonance; FR1 and FR2, ‘flat’ resonances. There is also one split flat resonance (Split FR)
which appears as two closely spaced simple resonances in the Stokes’ range atka = 0.733 and
ka = 0.784, respectively.

our opinion, it is not the question about the ways the flat resonances might come out in real
crystals that should be discussed in the first place. First of all, a theoretical investigation
of the localization of electron states near flat resonances is needed, including the effect
of electric fields on the conductivity of electrons localized near those resonances. On
comparing the theoretical predictions with experimental data, one would then see whether
or not the role of flat resonances is important in the formation of electric properties of 1d
disordered conductors.

The connection of the above analysis of resonances in one-dimensional quantum
scattering to the theory of 1d disordered metals becomes clear in view of the discussion
given in [1]. Suffice it to replace the mean free-flight timeτ in [1] by the quantityτk (1.3),
which has been investigated in the present paper. In particular, at the point of a resonance
we have 1/τk = 0 so the Hamiltonian of electron-impurity interaction (the third term on the
right-hand side of equation (3.2.1) in [1]) vanishes. This indicates, at least, a substantial
weakening of the localization. In fact, higher-order terms in the expansion of 1/τk in
powers of the differencek− kn should be retained in order to obtain a correct Hamiltonian
of electron-impurity interaction near the resonance. The results of the present paper provide
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an appropriate basis for such investigation.
The number1N of extended states arising in the neighbourhood of a flat resonance in

a 1d disordered conductor, may be estimated in the same way as used by Dunlapet al [2]
and Phillips and Wu [3]. The linear crystal chain may be thought of as composed ofN

identical, equally spaced atoms with the same interatomic distanceb = N/L. Some of the
atoms are replaced at random byNimp identical impurities so thatNimp � N . The order of
magnitude of the number1N of extended electron states lying in the vicinity ofnth flat
resonance, is determined from the relationlk > L, which yields

1N

N
= beπβn/2

2πλn

(
N

Nimp

)1/4 1

N1/4
. (4.52)

(The subscriptn indicates that the related quantity is taken at the resonance energyE = En
which is determined from equation (3.44).) This is the number of states with average
localization radiuslk being greater than the chain’s lengthL. In (4.52), the quantityλn is
the effectivelength associated with the string. It is equal to the derivative

λ = −∂Sk
∂k

(4.53)

of the functionSk (3.40), taken atE = En. Due to the main feature of an attractive ‘string’
(mentioned above in this section),λ is real valued and positive.

The relative number (4.52) of extended electron states in the neighbourhood of a flat
resonance is thus proportional toN−1/4. It is much greater than the number of extended
states arising in the vicinity of a simple resonance, the latter being proportional toN−1/2.
Also, the number (4.52) is inversely proportional to the power1

4 of the dimensionless
impurity concentrationNimp/N . The dependence of1N/N on N , as given by (4.52),
is quite general whereas the coefficient in (4.52) has been found in the semiclassical
approximation.

Current difficulties with the theory of the random dimer model in the physics of
conducting polymers, are due to the fact that extended electron states arising near resonances
in this model are easily destroyed by the on-site electron–electron interactions or external
electric fields (see [18–20]). This is mainly due to the fragile internal structure of random
dimers which is responsible for resonances (see the discussion by Phillips and Wu [3] in
the section ‘Final Remarks’). Therefore, the search for physical mechanisms that could
account for the observed stability of extended states in disordered polymers, has become
an important problem of the condensed matter theory. In the present paper, the existence
of resonances,both simple and flat ones, that arenot bound to a fragile internal structure
of defects, is pointed out forsingle (monomer) impurities. Therefore, the above results
provide an explanation why the extended states near these resonances may survive under
the effect of external perturbations.

It should be distinguished between the role of theinternal structure of the scatterer in
the formation of resonancesin general, on the one hand, and the specific features of the
scattering potential that are responsible for justflat resonances, on the other hand. That the
internal structure of the scatterer is not at all a necessary condition for resonances to appear,
neither for simple nor for flat ones, has been pointed out in [21] and demonstrated in the
present paper (see figures 4–7).Flat resonances are due to a specific element (attractive
‘string’) which is frequently found in the analytic structures associated with quite different
scattering potentials (see examples (2.4) and (4.49) investigated in this paper). For this
reason, and in view of the similarity law in quantum scattering (see the first paragraph
of this section), flat resonances should be regarded as a rather general phenomenon in
one-dimensional scattering, not as a particular feature of very specific potentials.
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In summary, flat resonances may be interesting for the physics of 1d disordered
conductors for several reasons. First, the number of extended states in the neighbourhood of
a flat resonance is found to be much greater than the number of extended states in the vicinity
of a simple resonance. Secondly, a flat resonance differs from a simple one not only by the
order of zero of the reflection coefficientR(k), but also by a quite different type of phase
relations for the reflected waves with closely spaced wavenumbersk in the neighbourhood
of the resonance. Finally, a flat resonance is not necessarily bound to a fragile internal
structure of a defect, and so it is not affected by fluctuations in correlation conditions. For
all those reasons, we expect the extended states that appear in the neighbourhood of a flat
resonance to stand a good chance of surviving under the effect of both electron–electron
interactions and external electric fields.
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